AFOSR-TR- 81 -0841

SWT Report No. 81-3

ADAI0G 084

LEvey

THE COMPRESSIBLE LAMINAR TWO-DIMENSIONAL
WAKE WITH ARBRITRARY IAITIAL
ASYMMETRY

Prepared by
Anthony Demetriades

for

Atr Force 0ffice of Scientific Research
Building 410
Bolling Afr Force Base
Washington D.C. 20332
under Grant AFOSR 80-0267

Supersonic Wind-Tunnel Laboratory
- Department of Mechanical En?tnnring
Montana Stata Unfvers t,;
Bozeman, Montana 6971

July 198

Approved for public release; distribution unlimit:ed.

A

AFOSR TR

811239 g5




Qualified requestors may obtain mmwtmmﬂ‘ﬂ the Defense Technical
Information Service. S PRIy CPR S

Conditim'égfg sprofuctfon

Reproductiun, translation, publicatios, uumd df%ﬂ in whole or in part
by or for the United States Government fs pevwittsd. -

DR T



SECURITY CLASSIFICATION OF Tw'S PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF%%%"JS&;E%%’,}?FSORM
7~ REPORT NUMBER 1. GOVY ACCESSION NO, ). RECIBIENT'S CATALOG NUMBER
AFOSR-TR- 81 -084 M)-2/02 154
4. TITLE (and Subtitie) S. TYPE OF RFPOAT & PERIOD COVERED
The Compressible Laminar Two-Dimensional Wake (ANNUAL) - ac -

With Arbritrary Initial Asymmetry 1 October 1960 - 30 Sept. 8

8. PERFORMING QRG. REPORT Ni,MBER

SWT 5 = 81-3

7. AUTHMOR(s) 8. CONTRACT OR GRANT NUMBER'Ss)

AFOSR 80-0267
Anthony Demetriades

9. PERFORMING ORGANII‘A"{IAN NAME AND ADLRESS 10, ::giRAA’W‘OERLKEESINYT'N'TJ.MOBJEERCJ' TASK
~Mahanical .Engineering Department g;égZFz
Montana State University, Bozeman, MT 59717 /A
11 CONTROLLING OFFICE NAME AND ADDRESS 12, JRE]PORTQDBATE
Air Force Office of Scientific Research/NA uly 1981
Bui]d-ing 4]0 13. NUMBER OF PAGES
ing AFB, DC 20332 76

14 MONITORING AGENCY NAME & ADDRESS(If different from Contralling Oftice) 1S, SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECLASSIFICATION DOWWGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT rof this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different {rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identily by block number)

Laminar flow, wakes, free shear flows

2d ABSTRACT (Continue on reverse side If necessary and identily hy block number)

\ﬁ’CIOSed-form analytic solutions are presented for the two-dimensional laminar
wake, which are applicable from the trailing edge to infinte downstream distances,
and for any %initial asymmetry? ratio of the two merging boundary layer thickness-
es. An initially exponential velocity profile is assumed, and Gol ‘s tr-atment is
utilized of the evolution of the profile based on ’4e Oseen a proximation. The
solutions show the effect of edge Mach | aber, Reynolds number, wall-to-stagnation
temperature ratio and asymmetry factor. Beyond a certain distance from the — ...

. B g -

FORM / ;o . .
DD iy s 1473 UNCLASSIFIED G/j*l C

e rvipy

TV L ASKIEICATIAN AF TS PAGE “When Date Entered)
. “m!ﬂ o sty M mavrt " alan Y s v T ot T S

S e st mas o [

A

ORI U




UNCLASSIFIED
ICURITY CLASSIFICATION OF Tw 8 PAGE ‘When Data Entered)

R

.trai'ing edge the solutions reduce to the well-known asymptotic behavior
*eqardless of tne magnitude of these parameters, In the "non-equilibrium"
region from the trailing edge to the equilibration distance, the supersonic/
hypersonic cooled wake behaves rather abnormally. The effect of initial asym-
metry is to deflect the wake center off the plane of the trafling edge, and

to displace the wake “"center' of the velocity relative to the temperature-
density center without much affecting the velocity, temperature or density
defect magnitudes or the wake thickness. Comparison with earlier work shows
very good agreement with the Tollmien-Goldstein implicit solutions near the

7 -

found with avai

TNTIS
DTIC

IR

trailing edge for symmetric incompressible flows.

Acgession Tar

Unaans "
Justis o

By -
Disty:ibus

At

Good agreement is also
lable experimental data.

S

/

GEAY?
L

| 7:{

Y 7

" i I IR SR e T

s -t

i
1
l
;

|
}
b
!

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS BPAGE/When Dete Entered)

‘s




FOREWORD

This work was performed at the Supersonic Wind-Tunnel Laboratory of
Montana State University by A. Demetriades, Professor Mechanical
Engineering, under Grant AFOSR 80-0267 with the Air Force Office of
Scientific Research of Washington D.C. It is part of a series of
theoretical and experimental studies of the high-speed mixing character-
istics of laminar, transitional, and turbulent shear flows.

In a practical sense, this study furnishes theoretical predictions
of wake flows needed to optimize gas-dynamic and chemical laser design.
As such, it was most recently motivated by work done by the author for
the Air Force Weapons Laboratory and TETRA Corporation of Albuquerque,
New Mexico. Specifically, the present problem was first discussed in
TETRA report TR-81-005 by the present author, in which the solutions for
the velocity were first shown. In the present report, the subject is
continued by presenting the solutions for the thermodynamic variables as
well. For the sake of completeness, the earlier velocity-field solutions
are also briefly discussed.

A second, related motivation arises from the need to prepare theoretical
predictions for certain experiments planned in the laboratory's supersonic
tunnel for the AFOSR program. These experiments feature the basic fluid
mechanics of asymmetric wakes and shear layers at supersonic speeds, for
which predictive formulas are presented here. (learly, if the latter are
verified by the forthcoming experiments, the present analysis can become
an important tool in laser cavity design.

Encouragement of, and interest in this work, has therefore come
from diverse sources which the author wishes to acknowledge here. The
assistance and cooperation of Drs. W. Moeny of TETRA and P. J. Ortwerth and
L. Wilson of AFWL, as well as of Capt. M. Francis of AFOSR is noted with

gratitude.
AIR FOROR QFITAT Q7 QATENTIRTA DL TRATCH (AFSC)
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Chief, Technical Information Division
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physical wake half-thickness

a constant function of Me’ Tw/T0 (eq. (29))

a constant {eq. (30))

non-dimensional lateral similarity coordinate (eq. (50))

value of F at wake center
T

v — =1 (temperature function)

e
value of h at the T.E.

total temperature defect (eq. (64))

total temperature decrement (eq. (65))

total temperature profile (eq. (66))
integration kernel (eq. (9))

modulus in initial profile exponent

tength of hypothetical plate generating wake
scale length

Mach number

asymmetry ratio 01/62

density defect (eq. (59))

density decrement eq. (60))
u

unit Reynolds number = &
Ve
Reynolds number
ueL
Reynolds number based on L = N
e

Reynolds number based on Momentum thickness 8
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temperature defect (eq. (51))
temperature decrement (eq. (55))
temperature

total temperature (used for variable local total temperature as
well as for fixed flow stagnation temperature).

temperature profile (eq. (56))
Trailing edge {origin of x, x”)

flow velocity
u

Ye

initial value of u

velocity profile, eq. (45)

velocity defect, eq. (44) or (74)

longitudinal coordinate (dimensional)
non-dimensional longitudinal coordinate, eq. (25)
non-dimensional longitudinal coordinate eq. (36)
lateral coordinate (dimensional, physical)
compressible-transformed lateral coordinate eq. (7)
non-dimensional lateral coordinate, eq. (26)
non-dimensional lateral coordinate, eq. (37)
velocity center position of asymmetric wake
temperatur: center position of asymmetric wake
density center position of asymmetric wake
kinematic boundary-layer thickness

monentum thickness

total momentum thickness 8, * 8

viscosity
kinematic viscosity
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lateral coordinate, same as y but at x = ¢

density

density profile, eq. (61)
Prandt] number

quantity in y > 0 half-piane
quantity in y < 0 half-plane
Physical, dimensional property
edge or free stream property
quantity at wake center
Quantity on y = 0 plane

wall property

property at x = 0 (except To)
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1. Introduction

The problem addressed in this report is ihe steady, laminar two-
dimensional wake formed by a homogeneous fluid streaming past an infinitely
thin plate. As enunciated, this problem was first solved for incompressible
flow Ly Tolimien (Reference 1) and Goldstein (Reference 2). These solutions
take a simple self-similar form {'ar away from the trailing edge (T.E.), which
has also been used as a convenient starting point in the discussion of
compressible wakes (Reference 3). In the region immediately past the
T.E. the classic solutions of References 1 and 2, however, have been
arrived at in the form of matching expansions, which produces tabulated
numerical results rather than a single analytic erpression. It would
clearly be desireable to have closed-form analytic solutions instead, in
a way improving the perception of the wake behavior.

This report sets out to accomplish two objectives, the first of
which is the derivation of formulas for the wake properties which are
valid from the T.E. to an infinite distance downstream. This is done
at any stream Mach and Reynolds numbers and any T.E. surface temperature
relative to the stagnation temperature, by restricting the analysis to
isobaric flow, Prandtl number one and constant Chapman-Rubesin factor.
These restrictions are certainly not severe enough to obscure the dynamics,
and can be removed once the basic problem is understood.

The second objective is to extend the solutions to a wake with
initial asymmetry. In reallistic terms, such an asymmetry is more likely
to occur, say, when two adjacent nozzles discharge parallel streams, as
shown on Figure 1, than in the classic flat-plate wake. In fact, the
motivation for this work arose from questions of gas-dynami¢ and chemical
laser design optimization, which deal with geometries such as that of
Figure 1. Since the two streams are identical, the asymmetry can arise
only due to surface conditions at the T.E., such as different momentum
thicknesses or different wall temperatures on either side of the T.E.

The latter is rather unreallistic, however, so long as we consider the
partition near the T.E. as "infinitely thin". Thus, we consider only the
asymmetry due to momentum-thickness differences in the two merging
boundary layers.

b e e




It must be n1oted that the method of solution for both the symmetric

; and asymmetric cases rests on a linearization assumption. However, since

the initial and asymptotic conditions at large distances are recovered,
the penalty for this assumption is nowhere evident.

2. Statement of the Problem and Definition of Terms

The solution of the wake problem given herein is subject to the
following restrictiuns:

1)

The flow is everywhere parallel and two-dimensional.

2) The pressure is everywhere constant.
3) The fluid is chemically homogeneous and non-reacting.
. 4) No velume effects (e.g. volume heat addition or body force) are
f allowed.
' 5) The flow is laminar and steady.
J A lesser assumption is that the Prandtl number is unity everywhere,

chosen consistently with the use of the Crocco relation for the temperature
distribution in the boundary layer at the trailing edge (T.E.).

Within these restrictions, the solutions are provided for:

(a)
(b)
(c)

(d)

Any stream Mach number Me.

Any Reynolds number Re.

Any wall-to-stagnation temperature ratio Tw/To (Tw is the T.E.
surface temperature).

Any asymmetry ratio 01/92 = P.

The solutions are thus provided as functions of x, y, M, Tw/To’ P
and Re, the latter implicitly through the definition of the non-dimensional
variables. Wh- N = 92 or P =1, the solution is termed symmetric, whereas
the term "completely asymmetric" denotes the solution for P = 0 (or P = =),
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The terms defect, deficit, and decrement are used to denote characteris-
tic groupings of the flow variables at a certain x from the T.E. For example,
for the temperature:

T(0) - Te or TC =T, : deficit

e
T(0) - T or Te - Te :  defect
Te Te
T(0) - Tq or Te - Te decrement
T - T, T, - T, |

The subscript "c" (for "center") is used to denote the extremum of the
temperature profile at a certain x for the general case of wake asymmetry
(P#1). When P =1, T, coincides with T(0), the latter symbolism meaning
the temperature at y = 0 which is also the wake "center" (plane of symmetry)
when P = 1,

The term "protile" is reserved for specific non-dimensional groupings
such as

Ue -u or Ue - u
ug - u(0) ' ug - U,

while the term "variation" is often used to represent groupings such as
1 - u/ue.

3. Solution of the Problem for Arbritrary Asymmetry

3.1 The Method of Solution

The present objective is to find the fluid properties (velocity,
temperature, density, etc.) in the wake as a function of the coordinates,
the flow parameters, and the asymmetry ratio P. To this end, we utilize
the solution reported by Gold (Reference 4 ) for a wake beginning at the
T.E. with profiles

¥ %
— »* W (x, )
& (x5 y*) = i- u‘é (1)
€
3
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T (2)
of the velocity and temperature. Gold employed the Oseen approximation
to the boundary-layer equations to find the solutions as follows:
I @ _ o
% (64) = 5 S—muo(pris x,4) d¢ (3)
— m—
b(x,0) = - Hucvc’sx,w (4)
(o) = 5= | R (P E(F §
-~
where GB, Fb: initia) velocity and temperature profiles, and
%
x = = (5)
L
=z 1 {Re
LA S (6)
~ p * o
4 =) 5 4 (7)
° e
L = characteristic length, to be derived.
= WUel
RC‘_ = A (8)
e
{ 1}/‘1
G(SJ’(’%) =\/—_-T.c. -QXP [‘-(‘-’,"E) X] (9)
The Oseen approximation is a linearization restricted to:
J << | (10)
%i << | ()

Note that dimensional properties above, are usually denoted by an
asterisk (*) or a subscript "e".




Three additional remarks must be made as regards the above solution.
First, Gold assumed the Chapman-Rubesin factor wp as constant; second, the
coordinate x appearing in eq. (5) was written by Gold as xk', to account
for non-unity Prandtl number. Here we set ¢ = 1 to be consistent with our
later use of the Crocco relation. This difference can be easily accounted
for in numerical caIcu]ations. and is in anyway a rather unimportant feature

of this analysis.

Third, Gold calculated that the solutions (3) and (4) are rather

insensitive to the initial profiles Uy

and ﬁ; especially far from the

origin, and that the governing factor is the initial momentum thickness
rather than the initial profilz shape. This should be kept in mind in

the next section.

3.2 The Initial Profiles

If the shed boundary layers have momentum thicknesses 6, and 6,
respectively, then the initial velocity profile at the T.E. for purposes of

calculating the wake development is:

- - U
* . = | - -
fr 4N g0 o Ugmi- .l
% o~ *L‘é
V&,s?<o : e
with k], k2 evaluated from the linearized version
*— %
B—Saod
. 3
of the momentum integral
[ 4 0o u)N o
PU U4y * R -2y = VT (128G )d
8.‘}“:( e)n ue( G o(1-U» d
o] e € 0 o
where ‘3;‘
~ ¥
% = J _S d\a
9 Q

(12)

(13)

(14)

(15)

(16)




Use of (14) instead of (15) as a boundary condition is consistent with
Gold's theory which is used past the T.E. and it implies that

wz1 -4 oy (17).
Using (12}, (13) in (14) gives

so that the initial velocity profile reads

:,5 >o i U, = e-‘t/o, = e-} - 9)
~ - % /6. Py
4 <o i kg =@ =& (20)
with y s Cj/e. (21)
(22)

The choice for an exponential initial velocity orofile is arbritrary,
although it has obvious qualitative similarities to a "typical" profile as
Figure 2 shows; clearly, too, it is algebraically simple and should
therefore expedite the solution. The earlier comments should also be
recalled, regarding the insignificance of the initial profile details to
the wake development. It is more important to note that the chosen
profiles (19) and (20) cannot possibly fulfill the condition (10). We
shall see from the results that the solution is analytic for all x > 0,
however, and that a very reasonable continuous solution is obtained.

The parameter P, called the asymmetry ratio, is a key parameter in
this analysis because it shows the initial "skewness" of the wake.
Because of the interchangeability of e] and 6, the range 0 < P < 1 covers
all possible ratios of 8 and 6,.
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For consistency, the definition of y must be carried from the T.E.
to all downstream positions. This allows us to define the length scale
L by combining (6) and (21):

9 _ 3
2lre. = § (23)
L=6Re | Re < o6 (24)

so that the non-dimensional variables x and y in the proposed solution
(3) become, according to (23) and (24):

X*
= 5%, (25)
4 = ‘% (26)

We perceive that the choice of L can be further improved, to avoid
awkward mathematics such as for P = 0 (6] = 0). Besides, it should be
clear that the wake should be controlied by its total drag, i.e. e] and
855 and by P which shows how this drag was initially distributed between
streams 1 and 2. We will make this improvement on L later, since it is
more convenient to first present the solution in terms of the coordinates
as defined by (25) and (26).

The initial temperature profiles were found with the aid of the Crocco
relation:

2
I;Tw r-! z'_TL" 8. —Y:..,M?‘.".‘.
T T +(1+73 Me Tﬁ)“‘e 7 e (g (27)
Using the definitions
- T ”
= (= - (Z8)
‘4\.0 (TQ- )x=o
T
= -l - —
B = "5 Me~l +— (29)
-1 2
< (30)
7
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as well as equations (19) and (20) we obtain

y>e t hy =Be?+ Ce P (31)
Z.FE}

#
. = -+ C e
‘9(0 N t\o B‘e (32)

The Crocco relation (22) is valid when the Prardtl number &= 1. For
this reason, as already mentioned, consistency requires that the wake
solutions are founa for ¢ = 1 also, ac we intend to do.

L

Typical initial temperature profiles according to (31) and (32), are ?
illustrated on Figure 3, and are useful in stressing two points. First,
the examples of Figure 3 were chosen to illustrate the possibility that
for certain Me and Tw/T° we can obtain E°> > 1, which violates the assump-
tion (11). This violation is more serious than in the c2se of the velocity ]
where ib = 1 at most; thus the temperature results of the present analysis
should be viewed with caution near x = 0. Second, the distribution of
temperature is plotted in two different ways. the "profile" function being
shown on o2 right of the Figure. The algebraic form of the profile often
creates unusual curves, a point to be kept in mind during the presentation
of results.

o,

3.3 Solutions

|
If the initial profiles (19), (20), (31) and (32) are substituted
in eq. (30) and (4), simple, closed-form solutions can be immediately
obtained for u and : . N
- P
ul¥,y;P) =-’2-_[_e “P'*(a-E'r,(\fi(Pﬂkz%)) ¥
- 33
+ e %(I-I-Enfﬂ(%—l\)J . (33)
- PLP
Tw \ = x- -4 xF+Pe
ﬂ(x,%',P,M‘,{)—‘i(BIe B VR (1 i-x))'f;e (v=-  (34)

~Eafvx (Pr =) ] + [ 2 (=B v (2- 2 ie “z“'(n-E—n;fE(zP+%( »] ]

As expected, u does not explicitly depend on Me and Tw/To' although it
does so implicitly through the transformned variable ¥.

8
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The solutions (33) and (34) have been successfully subjected to the
following tests:

(a) At x = 0, the initial profiles (19) etc. are recovered.
(b) Aty = £ | & =HR=0as expected.
(¢) At x =@, the familiar Tollmien-Goldstein asymptotic forms are
] recovered as expected, independent of P, (References 1 and 2)
The Tollmien-Goldstein asymptotes will be presented later.
(d) If e] and 8, are interchanged relative to the positive sense of

y, then the asymmetric solutions (P#1) also interchange, as they
{ should.

Solutions (33) and (34) are sufficient to determine the entire flow
field since the pressure is constant; thus the density, Mach number, etc.
can be determined directly.

Before anplying the solutions to special cases, it is here appropriate
to change the independent variables into a more meaningful form. - The
total momentum thickness of the wake is

® = 9."’97_

(35)
é ¢ and it appears suitable to use ® in place of 6 in the definitions of x
: and y (see (25) and (26)). The new variables therefore, are:
Yl“ w¥ - - X*
T @Reg @ Re’ (36)
9'= A (37)
®
The connection between x, y, and x”, y” can be found using (35):
o (P+*
; and
_ P+, (39)
. Y= 4
Y
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The snlutions (33) and (34) thus become:
»
=_ Y (P )% + (Pr) Y/ (1 -Ef((P+) V%’ + .%._ ))

(‘Pu)* (40)
re i ""(l-l-E—a{.(-?-v;,-P%'G'))]
and Pei\t . P4l ,
1 = _'i{a[e( FI X TT ey (R -,?;_,))

ve P+ )% +(Pedy ! (1 - g-,‘_((PH\G + 3— \)] +c e

(|_E"(-lﬁip%i _zr;')) ‘(P") x fz(P&l)?(l E?.‘(Z(P*")G + } ))]J

It should be parenthetically noted that the variable 1‘/1(“' 1s insensitive
to the choice of the normalizing length, as can be seen by inspection of
qs. (36) and (37).

(41)

4, The Symmetric Wake

As mentioned in the Introduction, a complete analytic solution from the
T.E. downstream has not yet been reported for the symmetric two-dimensional
wake, regardless of M or Tw/To' Such a solution can be obtained directly
from (40) and (41) by setting P = 1. Then,
= [ A2y y! 4x'-1y’ '

=L 1=Eb (2 +2v%) + 2 TO+84 (2 _avm
%= 5 leTI0-eg (X +2r) e (2, -2 @
- av'-1y’ sy dx's 2y’ Bl (WE =2
4= 3 [B(e (1-E~f (2Vx {7)',")) + € (1-&2¢ o] ))

4w 1hx' 4’
+C(e'h 49((-&14(((’-2’ )) + € ‘*(‘
T

)
-Enf (aVx’ + 2 )))] (43)
2%’
These solutions are naturally symmetric in y~.

In the symmetric case, the wake center occurs at y” = 0, (i.e. the plane
of symmetry) so that if the wake defect is defined as

ue‘-ulﬁ) U-Ue

W= = wi(x’) (48)
Ue Ue
and the velocity profile as usual by
~ UQ-Q o~ !
w = = u(y’) (45)
Ug -U(0)

10

; (3
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then a = wl (46)
It can be easily shown from (42) that the defect is

Wi Pe) = e (1= Enfa) (47)

and that W(x” = Q; P = 1) = 1 as expected. At very large x“, this defect
becomes

|
2V x’ (48)

which is well-known of the Tolimien (Ref. 1 ) and Goldstein (Ref. 2 ) and which
has since been discussed >y numerous authors (Ref. 3, 4).

W()":CD ‘)?-’") =

-

The velocity proiile begins, at x“ = 0, with the double-cusp shape given
by (19) and (20) and P = 1. The discontinuity at y” = O disappears just as
soon as the fluid leaves the T.E.; for all X > 0 the U, found by combining
{42), (46), and (47), is continuous and analytic in y*. At large x” it

can be snown from (45) that 't

o~ 1 —4-;‘
w(x=m yP=1) =€ (49)

This simple result has been long known as the asymptotic form of the

profile, which depends on the similarity variable
!

s

F= = (50)

The temperature distribution at the T.E. as given by (31) and (32) is
of course generally discontinuous at y = y“ = 0. Just like the velocity,
this distribution develops a "rounded top" and is everywhere analytic
immediately past the T.E. according to (43). On the plane of symmetry
y’ = 0, the temperature defect

T(0)

_ e T @
t = Afo) = & (¥,04P=I -,Me,%’)a = - =

y . (51)
= Be“(‘ ~E4eVx’) ¢+ C e"*(l -&nd 4Vx’)
At the trailing edge (x” = Q) the initial defect is
t(x'=0) = B+C = ;_‘5' -
e (52)
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as also indicated by (31) and (32). Far from the T.E. on the other hand,

ZVWtx”’

(=@ )b (00,0 P21 Me, § ) = (B+S) (s

Combining with (47) we note that at large x” the ratio of the temperature
to the velocity defects is a constant dependent on Me and Tw/T° only:

t C _wr-t (., Tw Tw
W= B+—£ - E—M" ('{"‘ -_F°)+(7_;"'> (54)

Here the first term on the r.h.s. indicates the compressibility effect on
wake temperature, while the second term indicates the effect of the surface
temperature only. There is, of course, a Prandtl number effect which is
ignored here as per earlier comments; if the Frandtl number & was included,
then the entire r.h.s. of (54) would be multiplied by & .

In addition to the temperature defect as defined in (51), we can
consider the temperature decrement

r_ T()-Te 1, 4, T
t='m—-——-—'—Te -:.‘t(\l)Me)%:) (55)

which is always unity at the T.E. as opposed to the defect which can be
larger than unity at x” = 0. The decrement, which is simply related to t
via the ratio Tw/To' is useful when the latter is different from unity.

The temperature profile
~ T- Tg

= T)-Te (56)

is equal to the ratio h /t and can be thus found from (43) and (51). At

the T.E., the profile is yiven for P = 1 by the initial conditions (31) and

(32); at large x°, on the other hand, the profile asymptotic form is again
~ gt ax -t

which is again a consequence of €= 1. Parenthetically note that, in general,

~ . )—e-GFz
T(Y-’w,‘0$| - (58)
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The fact that the asymptotic velocity and temperature profiles (49) and
(57) agree with the long-known results of Tollmien and others is an important

cross-check of the present analysis.

Other flow variables, such as the density, total temperature and
Mach number, can be obtained in. the above manner quite directly. For
the sake of completeness, these variables will be given below.

Using its custonary definition, the density defect is

Pe - 5t0)
fe

with t given by (51). Similarly, the density decrement is

= fe-Pl0) 2
Ve U e (60)

The density profile:is
r~e - ~ t""
S0 -
fo - $L0) Tt +1

v =

__t
T+ (59)

(61)

An inspection of these formulas for the density reveals once again that
the density "lags" the fluid temperature in the attainment of similarity at

large x°.

The local Mach number, M, in the wake is given by

1-OW
V=M Er (62)
and on the plane of symmetry (&‘--f‘: 1 ):
( i
M(v) = Mg = (63)
Finally, the total temperature defect s
| +0.2 M(0)
H = To(D)_' = (t+) - (r:l.4) (64)
= Tee l+0.2Mé‘
while the total temperature decrement is
= _ Tl -Te _ _H_
= (65)

Tw-Toe, -1% - |
13
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and the corresponding profile is oo \y?®
S To-Tee _ (1+Tt) Tioan

H= > —
T (o) -T 140.2M00) "
J(0=Toe  (1+1) RTRYTY

Note that in the last few formulas, above, dealing with the local total
temperature, the symbol for the latter is To‘ The quantity Toe is the:given

total temperature of the stream, which in earlier sections was denoted by

To.

(r:l.‘)

(66)

Sample computations and plots for the syﬁmetric wake will be presented
in Section 6.

5. The Completely Asymmetric Wake

Early computations made in this work with eqs. (40) and (41)
showed that considerable departures from the symmetric wake case given
above, occur only for extreme values of the asymmetry ratio P, that is for
e] >> 0, or g, << 62. It therefore seems reasonable to limit the analysis
of wake asymmetry to the extreme case 6, = 0(P=20)or 62 2 0 (P = o),
These two extreme cases are of course identical since one can be obtained
from the other by mirror reflection of its flgw field about the y“ = 0
plane. We shall therefore discuss only the P = 0 case, which means that
one of the two merging boundary layers is vanishingly small relative to
the other. We call this the "completely asymmetric wake". (Of course,
the general solutions (40) etc. can be used for arbritrary asymmetry).

For P = 0, the initial profiles at the T.E. are:

; ~
>o ¢ u, =0 -
K] o ‘3/9; 4W/'® %/ (67)
u)_'<o ! -IA-O = € = € = &
(68)
0 , =
o . =0
v ° (69)
14
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Q{Jl

(70)

It is both necessary and intuitively possible, here, to preview the
development of this asymmetric wake beyond the trailing edge. As x~
increases, the above initial profiles will tend to "rouna off", but the
“center of gravity" of the profile initially lies in the y” < 0 half space.
It 1s therefore 1ikely that the profile maximum (actual velocity minimum)
will lie in y* < 0 and not y* = 0 as was the case of wake symmetry. This
maximum will be referred to as the "wake center", and its path (the
"deflection") away from y“ = 0 is of some interest. For ~.ample, we can
intuitively predict that the wake symmetrizes at large x“, but not whether
the center will return to the y” = 0 plana. The subscript "¢" for "center"

will in anyway assume the role the symbol (0) had for the symmetric case
(see Section 2 also).

The solutions for the completely asymmetric wake can be directly
obtained from (40) and (41) in the limit P = 0:

Y R S ERS TR 5 ) (1)

4X+
Ce. (0 -e:,uzﬁ_ ) (72)

Ty B e
“W: P=03Me, 3) == € (n eu,(m_ )+
These equations exhibit the proper limiting behavior; for example,
in the limit x” = 0, eq. (71) reduces to (67) and (68), while in the limit
x* = =, it reduces to (48). It is equally easy to show that equations (71)

_and (72) are asymmetric relative to y*, and that at y“.= 0 the u obtained from
(71), that is

’

- ' X '
u(Y)V}':o.)P:D) :-,-‘i € ('—E'I.‘-r);) (73)

does not represent the apex of the profile as it did in the symmetric
case (in References 5 and 6, eq. (73) was called the "pseudodefect").
In the present case, the velocity defect is defined as

u ! P
:-i = w(x,0;P=0) (74)
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where U is the minimum velocity at any x”, herein also called the "center"

velocity. Then the velocity profile is
~ ue..b(

W = - 75)
- (75)

The center velocity u. as well as the position y’cu (the “"center position")
at which it occurs cannot, unfortunately, be derived in closed form. It » §
will therefore be discussed in connection with the computations of Section 7.

The discussion of the asymmetric temperature field follows quite closely ,
the above discussion for the velocity. The definition of the temperature )
defect, decrement, profile, etc. follows the rule that the symbol (0) used i
for the symmetric wake (eqs. (45), (56), etc.) is now changed to a subscript
c. Note, however, that the apex of the temperature profile is again
impossible tc derive analytically in closed form. We tharefore have no 1
“a priori" evidence that the wake center found from the temperature profile
coincides with the wake center y’cu discussed earlier for the velocity
profile. This point will be clarified in the computations presented
in Section 7.

The remaining properties of the completely asymmetric wake such as
the density can also be presented in the form of defects, profiles, etc.

defined as for the symmetric wake but with subscript "c¢" in place of the 32
symbol (0). Results will be shown below.

6. Computations and Graphic Results for the Symmetric Wake

The formulas derived in Section . for the symmetric wake (P = 1) have
been utilized to present graphically the behavior of the fluid properties
in such a wake from the T.E. (x” = 0) to far distances downstream. These,
which are shown on Figures 4 through 16 and which will be discussed }
briefly in this Section, were obtained by numerical computations with the
programs shown in the Appendices.

The chief interest here l1ies in the way the flow adjusts from a b3
discontinuous profile at the T.E. to a continuous, analytic profile
immediately past the T.E. We are also interested in the speed with
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which the asymptotic solutions (48), (49), etc. are attained. We are no

less interested in the effect of stream Mach number Me and of the temperature

ratio Tw/To on these adjustments. In this respect, it should be recalled
that the fluid velocity is, in the compressible transformation of eq. (16),
unaffected by Me or Tw/TO. but that the thermodynamic variables are
strongly affected by these parameters.

It is well to keep a physical perspective of the distances involved
downstream of the T.E., and in this sense the kinematic boundary layer
thickness d is a more meaningful length measure. For example, suppose
we are interested in the flow in a gas-dynamic laser cavity 10 cm.
downstream of the nozzle array. Suppose, further, that the nozzle exit
Mach number is high-supersonic with a laminar § = 0.5 mm. In this case,
the ratio 8/6 is of order 20, while Ree can be taken to be 400 (i.e.
near the upper limit for laminar flow). Then, from eq. (36):

’ X* K * x¥ o |

x:____. = =

T@Reg  48Rey 4% 5Reg 42 400

= 0.25

(76)

In this example we see, therefore, that the range x” < 1 is of major
practical interest.

Figures 4 and 5 show the velocity defect according to eq. (47). The
experimental points on Figure 5 will be discussed later, but the comparison
with other theories is in order at this point. Specifically, the good
agreement with Goldstein's theory (Ref. 2 ) should be noted, as well as
the difference from the "asymptotic solution", i.e. eq. (48). The latter
seems to be adequate in giving w(x”) beyond x° = 1, but expectedly fails
to do so at x”~ < 1. Figure 4 demonstrates, by the proximity of the solid
to the dashed curves that for very short distances past tne T.E. the profiles
are still almost identical with the initial profiles ﬁo, T0 marked "theory". '
(the solid curve for i has a rounded apex not visible on this graph). The
evolution of the velocity profile U is shown on Figure 6. The use of
two different abscissas in this Figure is necessary to show how the profile
approaches the similarity solution (49), occurring past x“ = 1 as noted.




There are infinite combinations possible of Me and Tw/To which can
be used to examine the behavior of the defects, decrements, and profiles
of the thermodynamic variables according to eqs. (51), (55), (56), etc.
of Section 4. Generally, computer runs with the programs shown in the
Apprendices were restricted to Me =0, 2, 4, and 6, and Tw/To values of
0.2, 0.6, 1, 1.4, and 1.8 (the "cooled", "adiabatic" and "heated" wake).

The temperature-decrement plots of Figures 7 and 8 indicate the
significant finding that the wake behavior subdivides naturally into
two categories. The first is the high-Me, highly cooled type of wake
(Figure 7 ) which is also the one of practical importance in laser
applications. Here the decrement is "normal for Me < 4, but between
Me = 4 and 5, the decrement switches sign---in some measure due-to the
definition of the decrement. For all other cases, however, the behavior
is typically shown on Figure 8 ; the decrement decreases monotonically
from the T.E., and is always included within the band defined by each
pair (solid and dashed) of curves. For example, for adiabatic or heated
wakes (Tw/To > 1) and at x” = 1, the decrement always lies between 0.25
and 0.35 regardless of Me'

The effect of compressibility and heat transfer on the temperature
profile is shown by the three plots of Figures 9, 10, and 11. The
effect of high Me alone or T.E. cooling alone does not create any
unusual behavior in T as Figures 9 and 10 indicate; the adiabatic hyper-

! sonic wake is simply thicker than its low-speed cooled counterpart.
When high Me is combined with cooling, however, Figure 11 shows that the
profile has large off-axis peaks in the temperature, inherited from the
non-monotonic initial temperature distribution at the T.E. (see dashed
curves in Figure 3 and also in the upper portion of Figure 11).

Tne density and total temperature defects are shown on Figures 12
and 13. Note that for Me =5 and Tw/T° = 0.2, the density defect increases

quickly from 0.16 to 0.52 a short distance (x° = 0.05) downstream of the
‘ T.E. and thereafter decreases monotonically.
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Figures 14 and 15 illustrate the differences among velocity,
temperature, ard density in the speed with which each tends to achieve
the asymptotic state. The high-supersonic, cooled-wake envirorment has
been selected for these examples. Figure 14 plots the three defects
together with their asymptotes (i.e. eqs. (48) and (53)), since the
latter are sometimes used as approximations to the actual defects. We
see that by x“ = 0 the actual velocity defects are within 15 percent
of their asymptotic approximations, but that the density defect is closer
to one-half of what its asymptotic formula predicts. Similarly, for
x” = 0.1 Figure 15 shows that the density wake is considerably thicker
than the velocity wake, with the temperature wake falling between the
two. Note that these differences would be even more prominent if the
Prandtl number had not been taken as unity.

Finally, Figure 16 shows the physical "velocity half-tnickness" b*
for two different Mach numbers and temperature ratios. The b* is defined
as the distance from the wake plane of symmetry and the point whre i is
0.01, and was computed using a transformation inverse to that of eq. (16).
We see that (a) the wall temperature does not much affect the low-speed wake
thickness, but it does so for M, = 6, (b) the high-speed wake is thicker
by a factor of 2 to 4 than the low-speed one depending on Tw/To (this is
really the effect of the initial 8 /6) and (c) the wake grows by only a
smail amount (about a factor of 2 at most) before x” becomes unity.

The above results illustrate the findings of Section 5 that the present
theory achieves two major goals: an uneventful transition from the
discontinuous T.E. profile, and agreement with the classical asymptotic
behavior at large x”. Regarding the latter, the early papers (Ref. 7)
indicate that the asymptotic sclution is reached within about "three
plate lengths" (i.e. x* = 3£) of the hypothetical flat plate of length £
generating the wake. We can check to see if the present theory agrees by
connecting our coordinate x” with the equivalent normalized distance x*/&.
Using the customary incompressible formula for the T.E. 6 in terms of £:

‘ ezRe' = (0.664) A
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we get, from eq. (36):

"
, * x¥ ol x* - )_("
- X - T e = T em——— * - 0556
K = Sreg 40Reg 40%REy  4(.644)7L L

At x*/¢ = 3 or x” = 1,68 our present theory (eq. (47) or Figure 4 ) gives
w = 0.206, while the asymptotic value frzm eq. (48) is 0.218 for a
difference of only about 5 percent; tnus the three-plate-length estimate
still holds. On the other hand, the coriesponding comparison fo . he
density defect is 0.345 and 0.589 for the actual and asymptotic values

respectively, for a difference of 70 percent (assuming Me =5 and Tw/To = 0.2).

7. Combutations and Graphic Results for the Asymmetric Wake

As already noted, the computations for asymmetry were limited to the
extreme case of P = 0. To keep this report to a reasonable size, numerical
computations with eqs. (71), (72), etc. were done:for three cases: Me =6,
Tw = O.ZTO; Me =0, Tw = O.ZTO; and Me = 6, Tw = To. Coparison of the
former two a lows an appreciation of the compressibility effect, while the
heat-transf:r effect can be illustrated to some extent by comparing the
first with the third cases. Of course, the results for the velocity are

valid for all M, and T /T  because of the transformed coordinates.

A general illustration of the course of events heyond the trailing
edge is given by Figures 14 through 21 which include the initial variations
(at the T.E.) of the variable plotted. Note that these initial variations
are uniformly zero for all y“ > 0, since P = 0 implies that e] =0 if
62 is finite; that is, there is no boundary layer, initially, on the
positive half-plane., Also note that in these Figures, the plotted quantities
are the variations | - u/ue etc. rather than the profiles as defined by
eq. (75) etc.

Just as in the symmetric wake, the discontinuity vanishes as soon as
the fluid leaves the T.E., the "rounded top" of each variation marking the
"wake center". The T.E. asymmetry persists for some distance, symmetr’zation
occurring gradually toward the larger x“. The wake center deflects into
the y” = 0 half plane; for the velocity, which always starts out with the
center at y° = 0 the deflection is gradual. For the temperature, the Me =6,
Tw = 0.2T0 case shown in Figure 20, the center initially lies off the
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y’ =0 plane, i.e. at infinite x” the wake symmetrizes but remains displaced
off the y“ = 0 plane. For cases of practical interest, as Figure 20 shows,
the deflection does not amount to more than one or two . However, the
fact that the wake center for the velocity, called y‘cu' does not coincide
with that for the temperature or densi;y (y’c ’ y‘c respectively) is a
major finding of this work. Figure 22, on which the deflections of y‘c s
y‘c » and y‘c are drawn, shows that the centers for these three properties
remain deflected along different pathi as x” becomes infinite. This
difference in the wake center of velocity, temperature, and density lies

in the fact that whereas the velocity center is always at y” = 0 when

x” = 0, the extremum in the temperature distribution at the T.E. may be

off the y”~ = 0 plane (the case of the cooled hypersonic wake discussed

here is a typical example).

The above remarks refer to the compressible-transformed deflection;
in the physical plane, the wake centers (for the velocity only) are shown
on Figures 23, 24, and 25. It was found that in the physical plane, the
deflection decreases at large x” generally, i.e. the wake centers tend to
return to y° = 0. Since the deflection amounts to only a small physical
distance anyway, it probably deserves little additional discussion. Final'y,
in the non-dimensional coordinate F defined by eq. (50), the wake centers
for all variables seem to always return to y” = 0.

Figures 26, 27, and 28 show the net result of the asymmetry on the
maxima or minima of the flow variables at the wake center. This is ex-
pressed in terms of the defects such as of eq. (44), (51), etc. except
that the center property, being off-axis, is designated by the subscript
"c". Dashed lines on these Figures represent the symmetric-wake defects
from eq. (44), (51), etc. for comparison. It is seen that even the largest
asymmetry does not produce changes in the defects of any more than a few
percent, and these changes naturally vanish at large x~°.

Figure 29 shows examples of the developing profile, while Figure 30

shows how fast the asymmetric profiles approach the asymptotic limit
expressed by eq. (49). The example chosen is My = 6, Tw = 0.2T, and
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x =1, that is near the region where the symmetric wake itself (P = 1)
was beginning to coincide with the asymptotic profile. The ordinate
is normalized with the center deficit Ug - U, Or Tc - Te’ while the
abscissa F - F . where )
Fe = 2°

2V’
is shifted to put the top of the profile at zero. It is seen that at
x“ =1, only slight evidence of the asymmetry still remains, and that
all profiles regardless of P value are nearly the same as the asymptotic
one.

Finally, Fiqures 23, 24, and 25 show the geographical features of the
Me =6, Tw = 0.2To wake in the physical plane, consisting of the wake edges
b*/® in the two half planes and the physical wake center yz. The edges
and the center were again computed by the transformatior inverse to (16), and
are limited to the velocity field; that is the edge is the position
where the velocity profile is 0.01, while the center is the maximum of
the velocity profile (one could equally well draw analogous curves for
the temperature and the density). The following are obvious from these
Figures: (a) the initially zero-thickness portion of the wake grows
rapidly, while the initially finite half (the one with initial momentum
thickness ez) grows slowly and on occasion decreases slightly in thick-.
ness at the beginning, (b) the wake center originally deflects dcwnwards
and then returns toward the plane y* = 0, {c) the asymmetry decreases
downstream since the two edges begin becoming equidistant and (d) the
wake thickness in terms of @ is independent of P at.large x°.

8. Discussion and Comparison With Experiments

The present work was motivated largely by the desire to provide
closed-form solutions for the symmetric wake for application to gas-dynamic
lasers. In an earlier paper (Reference 8 ) the present author formulated
a theoretical compendium of wake predictions for compressible two-dimensional
wakes at arbritrary "e and Tw/To' This earlier theory was based on an
integral approximation to the total drag of and heat loss from the structure
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separating the two streams, as well as the asymptotic symmetric wake
formulas contained herein (eq. (48), (49), etc.) Experiments by Peterson
(Reference 9 ) and this author (Reference 10) produced data agreeing
with the turbulent-wake prediction of this earlier theory but disagreeing
with its laminar counterpart. This could be explained by the fact the
turbulent wake mixes so quickly that its non-equilibrium (adjustment)
zone behind the T.E. never plays a role; for the laminar wake, however,
the non-equilibrium zone (found herein to extend as far as x“ = 1 to

x” = 3) was unaccounted in the early theory, thus producing disagreement
with the data. It therefore became important to have on hand a wake
theory treating equally the asymptotic, far region as well as the non-
equilibrium ("near" or "adjustment") region close to the T.E.

The same data of Reference 10 disagreeing with the earlier theory
of Reference 8 are plotted on Figure 5. Two data points from Sato
and Kuriki (Reference 11) are also included. The agreement is very good
within the data scatter. No other quantitative data could be found for
comparison, but neither could intimations be found in the literature
contradicting the present findings. In fact, Batt and Kubota (Reference
12) present an experiment frequently intimating the validity of the present
approach; for example, they find that the proper scaling length is the
total T.E. momentum thickness.

Both Figures 4 and 5 show how, in the limit Me = 0, T, =Ty the
present theory agrees with the findings of Tollmien and Goldstein for the
entire x” range. This agreement, as well as the agreement with the data,
refers to the symmetric wake. No previous theoretical or experimental
threatment of the asymmetric wake could be found.

Note should be made of the differences between the adjustment of the
density field, and the adjustment of the other flow variables. The density
#s generally very slow to adjust to the asymptotic 1imit. The reader can
expand on this statement by making numerical computations with the programs
listed in the Appendix.
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The good analytic behavior of the solutions presented here, and the

agreement with the data appear, at first glance, to be disproportionate
to the severity of the basic assumptions (10) and (11). Recall, however,
that the solutions are forced to obey the correct boundary (initfal)
conditions at the T.E., while the method supplied by Gold guarantees the
proper asymptotic behavior as well. With the solutions thus "tied

down to the proper limits at the two ends", it is not surprising that

the intermediate regions give the proper results.

9.

Conclusions

Closed-form, analytic solutions have been found for steady,
laminar two-dimensional wakes applicable for any value of the

edge Mach number Me’ trailing-edge, wall-to-stagnation temperature
ratio Tw/T0 and for any ratio P of the momentum thickness of

the two merging boundary layers. The streamwise development of
the wake is controlled by the total momentum thickness and the
unit Reynolds number contained in the longitudinal variable x°.
Beyond a certain distance x” ranging from 1 to 3 the wake conforms
to the classic similarity form regardless of Me‘ Tw/To or the
initial asymmetry expressed by P. This distance marking tne

onset of dynamic "equilibrium" 15 almost exactly equal to that
found in early studies with incompressible flows. Only the
denzity lags behind the other flow variables in reaching equili-
brium within this distance.

Many, if not most, current practical applications involve wakes
within the "non-equilibrium" distance between the trailing edge
and x“ =1 to 3. The classic asymptotic formulas are inapplicable
in this region. For wakes such as encountered in laser cavities
(1arge Me' Tw < < To) the present theory reveals many peculiarities
of behavior, such as non-monotonic development, off-axis maxima
etc. even for the initially symmetric wake.
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Even for the largest initial asymmetry, the flow defects (e.g.
minfrium velocity) are almost equal to those of the symmetric
wake. In the non-equﬂibrLunr’F'égion. however, the initial
asymmetry causes the wake to deflect towards the side of the
initially thicker boundary layer, and the exirema in the velocity
profile do not coincide with the extrema for the density or
temperature,
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Density defects for the
symetric wake (typical).

Figure 12:
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sonic, cooled asymmetric
wake in the non-equili-
brium zone.
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A1 programs contained in this Appendix use the BASIC language.

The output symbols for each program, as they appear on the printout,
are explained in terms of the symbols listed in the beginning of this

report.

APPENDIX

—

COMPUTER PROGRAMS
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Smrnemen A

"WAKEFLOW2" PROGRAM

I P Purpose: To compute the defects for symmetric wakes as a function of
xS, with M, and T /T  as parameters.

2, Application Example

2.1 If the defects at a single x*, M, T /T  are desired:
Compute the defects at Mo = 3, T /T, = 1.5, x* = 0.6.
Enter: A
30 LETT
40 LET M
180 LET x -
AT
460
470

1.5
3
0.6

[}

[

'
Y

2.2 1f the defects at a single M_, T, /T, but a series of x* are desired.

Compute the defects for the above axampie but for x” intervals
of 0.05 from 0 to 0.8.

Enter:

30 LETT=1.5

40 LET M =3

180 FOR x = 0 TO 0.8 STEP 0.95
460
470

2.3 If one needs the defects for a series of x” at each of a series
of Mé,'and additionally for a series of Tw/To:
Compute the defects for Me =0, 1, 2. . .05, and Tw/To = 0.5,
1, 1.5, each for x” from 0 to 2 in steps of 0.2.

Enter: |

30 FORT = 0.5 70 1.5 STEP 0.5
40 FORM=0705 STEP 1

180 FOR x = U°TO 2 STEF 0.1
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3. Explanation of Qutput Symbols

Printout Symbol

B

C

TO/TE-1
TO-TE/TW-TE
1-RO/RE
RE-RO/RE-RW

W

M(0)
TOO-TOE/TOE
TOO-TOE/TW-TOE

59
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- “WAKEFLO2" LISTING j
) i
L0 REM HAVFP[U‘, S ’ :
20ODIM X(QU),XI(%0),.\40I,H(“O),X'(QU),H(4U),F’40) z<4no
2% DM HLGART,RO400,RL(40) .
27 DIM LACA0) , H2C40) ,HACRL)
30 FOR T, 20 TO 1.8 STER w4 -~ : AP
4 FOR M=0 T0 % STER 1 .. S coe e
50 FRINT “"SYMMETRIC WAKE DEFECTS K S
SN PRINY "FQOR TW/TO="ST ‘ ‘ . o
FOOPRINT "aND MACH No-"fM
Q0 FRINT
G LEY 8, 2K (MA2)R(THL) T
110 LET = M.HK(M”’) :
L20LFPRINT PTHE CONSTANT. Bt 3
130 PRINY “THE (UNHrnNI L'“‘l
' 150 FPRINT ,
; 140 PHINT,""h,"wm/rﬁml",“FU»TE/Tquﬁ“ CL-RO/REY  CRE-RO/RE~RW
LA FPRINT TARCEY, "W " MO0, Y T06-TE/TOE", "ruowTorlwwaoﬁv '
AT PRINT o ' : B :
C LB FoR Xwn Tn 2 STEF W3
LS LET F P '
CEen LET m;w. R2QLE A
230 LET a2 h‘490’36“uUUUUJi '
TR0 OLET AR 214187414
230 LET Q4MW1.4531»"02/ﬂ |
20 LET A%S=1.06140%429% W
; RS0 LET X1lm2RSQROX)
- 260 LET fsm1/ 1 EXX 1) : _ ' ‘
: E70 LET Ys(ALXD+AIKDAZY +AIRIDAZ) +A4X(DA4) AT DG YKEXF (~(X1A2))
" T80 LET KPP CA4XX ) IKY ; ;
’ 290 LET ¥ . 4
500 LET Fm1/<1+|xx , |
310 LET 7w (nixlrn;x(lhﬂ) ABRCFABYFARIFA4) +ASNMCFASY YXKEXF - (X242
20 LET M=ExW+CXEXF(LO¥X ) ¥ 7
AB0 LET MHlsks BRG)
240 LET ReHS (M)
AGOLET RLaR¥ LSRG )
A0 LET MI“MWII WY /ERCL D 1
BTG LET HZs ( CHA LY RO s 2K CMEIAZ) )/ (L s ZH ALY ) ) ] |
e 2RO LET HYu n /T
320 FRINT X,H,HML,R,RE
400 FEINT TEFEY WM, H?, HE3
4150 MEXT X
420 FPRINT
430 PRINT
' 460 NEXT
’ 470 NIXT T
SO0 END
! 1
60
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BYMME TR
FUOR TW,
AN MACH NO= 2

THE
THF

A4

0

leéd

1.8

|
b
\
h
3
L

CORGTENT
CONBTANT

WaKE DEFECTS

oy
v/

G s 3

TOSTE -,
W

-y ,
1
+1947988
+A582446
0883864
»BEAT 3
080449
+ 313716
07405943
cXTERET
0688760
PRHE N1 R
645929
s 236448
+ 0609823
$ 221232
L 05788768
208658
LO5H1987
198037

"WAKEFLO2" OUTPUT

TO=TESTW-TE
MO

1
0
e RE7TRHH
1., 03459
=+ BBABEOS
L.2178%
= 804491
1. 82048
~ e 740563
138953
“ 2 HBBTHR
1.4404%
e bAERLY
1.4800%
~s H0PBEI
1.31211
- B78678
1.53877
e GH 1286
Lefio 141

61

L0 /RE ,
TGO~TOE/TOE

~e 11111
]
0302557
=~ 2O0224
JO8L2087
= 21%5979
07449459
“s 190422
0689501
172681
+ 0164438

= WGP7 69

s06NAT7 38

“ 149444

0574772

“+141019

0547201

~e133963

JOG23112

~y LET9B7

RE-RO/RE~RW -
TOO-TOE/TW~TOE

1
1

~, 794305,
520449

T EOBTY
 AB19G7

v 670131
380847

A BONTL
LB45762

- GTPG 4%
V319537

“ 546064 .
L 298867

~ 517295
282037

~ 492481
V267926

-+ 470801
255873
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"WAKEFLO3" PROGRAM

Purpose: To compute the lateral profiles of symmetric wakes at a
fixed x“, Me‘ Tw/To’ as & function of y~.

Application Example

Compute the profiles for x° = 0.25, Me = 1 and Tw/To =1, for y*
intervals of 0.15 from O to 3. o

.Enter:

30 LETM=1

40 LET T =1

50 LET x = 0.25

380 FORV =0 TO 3 STEP 0.15
Explanation of 8Butput Symbols

Printout Symbol Explanation

Y-
{“/2SQRX~
UTILDA
TTILDA
RHOTILDA
M
TOTILDA

- <

— i

b i o 4

62
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10
’ L
el
20
20
49
)
SO
0
80
90
100
110
120
130
' 140
150
140
170
! 180
¢ 120
200
210
220
230
240
290
2460
270
280
290
J00
ailo
a20
325
330
340
245
390
340
azo
280
390
400
405
410
450
421
422

424

"WAKEFLO3" LISTING

BEet WAKEFTL O3
DIM MLCZ0),HE2(20),HICZ20),HACED)
DIM V200, YIC20), Y2200, RCE0) ., ¥YBCED ,Y4C20) ,R1ICENDY ,UCZ0)
DIM REGCZ0
LET M=l
LET Tl
LET X, &0
FRINT "SYMMETRIC WAKE FROFTILES"
FI' ] 'l' AT 17 i sans s st stnt s s s e s s i e s o b st et 1 ot "
FRINT
FRINT "FOR X ='gX
FIRINT "AND M= M
FRINT "AND TWATO="3T
FRINT
LET B 20 (MAZIXR(T+1) 4T 1
LET Cme o 2% (MAZ)
FRENT "COMFUTED CONSTANT B='"jE
FRINT "COMPUTED CONSTANT C="3C
LET PF=,327591
LET Al=,204829092%
LET AZ=-,2844967360000001 %
LET A3=1,421412741%
LET A4=-1.453152027 %
LET Af=1,0614054294
LET X1=2xX5QR(X)
LET D=l/14+PxX1)
LET Y=(AlXD+AZX(DAZ Y +ASX(DAZ) +A4X (DAY +AEX(DAS) ) XEXF (- (X1/2))
LET WaYXEXF (4%X )
FRINT "COMFUTED W='"jHW
LET X2=2%xX1
LET F=1l/CL+FXX2)
LET Z=C(ALXF+AZX(FAZ)+ABX(FADI +A4X (FA4)Y +ASK(FAS) ) XEXF (- (X242))
LET H=RExW+OXEXF(16XX) %2
FRINT "COMPUTED H=T(0)/TE - 1='"3}H
FRINT "COMFUTED DEFECT H ={T{0)-TE/TW-TE)="H/ (E+()
FRINT
FRINT "YU, "Y/ /280RX " "UTTLDAY , "TTILRAY, "REOTILDA"
FRINT TAEC(S),"M","TOTTILDA"
FRINT
FOR V=0 TO 3 STEF .19
LET Y1=U/X1+X1
LET YZ2=1/C1+FxY1)
LET R=(A1XYZ2+AZX(Y2ARI+AIR(YZAD) +A4XM(Y 244 +AGK(YZAT) ) XEXF (- (Y1AZ))
LET Y3=0/X1-X1
ITF Y30 GOTO 422
LET Y4:=1/(1+FxY3)
LET Ri=l-(ALXYR+AZX(YQA2)+ABX(YA4AZ) +A4X(Y4A4) +AGK(YEAT) IXEXP (—(Y342))
GOTO 430
LET Y3=X1-U/X1
LET Y4&:=1/C14FxY3)

63
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: 424
424
429
430
4410
450
460
470
' 430
490
500
010
B20
G530
G540
5350
b 560
| 570
580
590
400
610
420
430
633
437
¢ 640
&4%
b 646
647
HA4R
&49
A50
GEL
661
J00

7 -

"WAKEFLO3" LISTING (CONT'D)

LET R1=C(AIRY44+AZX(Y4A2)I+ABX(YAAD) 404X (Y424 +ATX(YAAT) IREXP (~(Y3A2))
LET U= Sx (RXEXF (4xX+2%x0) +R1XEXF (4xX=2%V)) /H

GOTO 440

LET U=, 9% (RXEXF (4xX+2%V)+ (14R1)®XEXP (4%X-2%V) ) /W

LET Y&=2xX1+V/X1

LET Yé&=1/(1+FxYE) A

LET RZ=(ALIXYS+AZX(YEAZI+AIRIYSAZ) +A4X(YEAA) +ASXK(YHAG) ) REXP (- (YTAL))
LET Y7=X1-U/X1

IF Y7<0 GOTO S20

LET Y8=1/(L+FXY7)

LET R3=(A1XYB+AZX(YBA2)+A3X(YBAB)+A4X ' YBA4) +ATX(YBAD)) ) XEXF (~(Y7A2))
GOTO 550

LET Y7=U/X1~X1

LET Y8=1/(1+FXY/)

LET R3=2-~(A1XYB+AZXK(YBAZ)+AX(YBAZ)+A4X(YBA4) +AGXK(YBAT) IXREXF (~(Y7A2))
LET Y?=2%xX1-V/X1

IF Y90 GOTO 600

LET Fl=1/CL+FxY9)

LET RA=(AIXF1+AZX(FLAZ)+A3X(FI1A3) +A4X(F124)+AGX(FL1AS) ) XEXF (=(Y?/2))
GOTO 630 ‘

LET Y9=U/X1-2%X]

LET Fl=1/14FxY®)

LET R4=2-(ALXFL+AZX(F1A2)+AIX(F1A3) +A4X (F124) +AIX (F1A5) ) XEXF (~(Y?AZ))
LET T1=,SX(EX(EXF(4xX~2%0) XRI+EXF (4xX+2%V) %R ) )

LET T2:=,5%X(CX(EXP(16XX-4%xV)IKRG+EXF (1 6%XX+4%V) XR2) )

LET T3=T1+T2

LET T4=T3/H

LET ROG=(TARCH+LI D/ (TARH+1)

LET M1=Mx{l-UxW) /7S8AR1+T4xH)

LET HZ2=((HH1) XL+ 2K (MLAZ) ) /CL+ 2X(MAZ) ) )1
LET H3=(1+T4xH) X (1+ 2% (M1A2)) /(L4 . 2% (MA2) ) -]
LET H4=H3/H2

PRINT V,U/X1,U,T4,RS
FRINT TAE(8),M1,H4
NEXT ¥

END
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"WAKEFLO3" QUTPUT

SYMMETRIC WAKE FROFILES

.- N L I L

FOR X7= .28
AND M= 1
AND TW/TO0= 1

COMFUTED CONSTANT E= .4

COMPUTED CONSTANT Cw=- o2

COMPUTED W= ,427564

COMPUTED H=TC(O0Y/TE - 1= ,119953

COMPUTED DEFECT H/=(TC(0)-TE/TW-TE)= ,59976%

Y’ Y /28QRX UTILDA TTILDA RHOTILDA’
M TOTILDA
0 0 1 1 1
+ 540894 1
10 o 15 985738 787599 +288913
COR702 1.12106
+3 +3 + 244288 +951407 2563684
64875 1.7231
T b + 45 1879449 +89432: 204561
LG92966 11.35166
+b b 796859 +820713 +836781
1629039 ~“1+70369
75 o 7S +703141 + 73382 7S7247
« 670389 ~e 675035
'@ 9 1604977 1645114 670604
+ 714203 ~+371414
1.05 1.05 508323 503693 + 58149
77884 - 227826
1.2 1.2 217857 +465832 +4941
799303 ~+145981
1.38 1.39 + 336733 384717 +411859
8369LGH -+ 0949774 !
L5 148 1266615 + 312385 + 337221 |
1.65 1465 1207897 +249804 271629 !
897756 ~, 03993 !
1.8 L8 1460037 197067 1215609 ‘
$P20752 -+ 0254572
1.95 1.95 121906 + 153633 +168949
93926 -~ 0159722
2.1 2.1 J0920926 + 118863 + 130922 {
+ 95386464 ~9.84869E-03 )
2.25 225 +0691332 09207185 «1008507
65202 =0.96667E-03
2.4 2.4 0516595 06892464 N765593
+ 973894 ~3.55195E~03
2455 255 0384782 0520665 05795
28049 =~Z.080389E-03
D7 247 0285984 + 0391517 0436431
JPB546 =1e20079E~03
<085 2.8%9 0212262 0293344 . 032738
289165 ~6.84796E04 _— !
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"WAKEFLO4" PROGRAM

Purpose: To compute the physical velocity half-thickness (defined at
U =0.01) for a symmetric wake, given Me' Tw/To’ x*, and
y“(ii = 0.01). The latter is found by first using the

WAKEFLO3 program.

Application Example

Compute the half thickness for Me 2 5, Tw/T0 =1, x* = 0.1; for this
case, WAKEFLO3 gives y“(i = 0.01) = 2.7.

Enter:

30 LETM=5
40 LET T =1
50 LET X = 0.1

3606 LET V = 2.7
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"WAKEFLO4" LISTING

10 REM WAKEFLO4

20 DIM VCA0),Y1<40),Y2(40),R(40),Y3(40),Y4(40),R1¢40),UC40)
21 DIM RECA0),V1IC40),R6(40),V2(40)

A0 LET M=%

40 LET T

90 LET X=,1

60 FRINT "FHYSICAL VELOCITY HALF-THICKNESS COMPUTATION (UTILDA=0.01)"
J0 FRINT "FOR SYMMETRIC WAKES"

;" :l If:l R' :I N T T ik ch10 000s 0 440 et 1400 4aen sams 00 12vm Saet 12e 254 SnRS e THRL TR oot e o Shen WS 4054 AMAD BA04 S004 Se0n es seme beme S0 a4zt tave wuee baan save §

80 FPRINT

S0 PRINT "FOR X/="3X

100 FRINT "AND M="iM

119 FRINT “AND TW/TO0="3T

120 FRINT

130 LET BE= 2%(MAZ2)RK(T+1)+T~1

140 LET Cw=-,2%(MA2)

170 LET P=,3273591

180 LET Al=,254829592+%

190 LET A2=~,2844947340000001%
200 LET A3=1.,421413741%

210 LET A4=-1,453152027#%

220 LET AS=1.061405429%

230 LET X1=2x5QR(X)>

240 LET D=1/¢1+FxX1)

250 LEY Y=(ALXKD+AZXK(DAZ)+A3X (DA +AGX(DA4) +ASX(DAS) IXKEXF (~(X142))
240 LET W=YXEXF(4%X)

280 LET X2=2xX1

290 LET F=1/¢14+FxX2)

300 LET Z=(ALXF+AZX(FAZ)+AIX(FAZ) +AGXK(FA4) +ASXIFAS) IXEXF (~(XZA2))
310 LET H=EXW+OXEXF(16XX)XI

360 LET VU=2,7

650 FOR TI=1 TO 40

660 LET VI(I)=IxV/40

46S LET Vi=Ui1dID

1370 LET Y1=V1/X1+X1

13680 LET Y2=1/7C1+FXYL)

1390 LET R=(ALXYZ2+ARX(Y2AZI+ABX(YZAB) +A4X(Y2A4) +AUX(YZ2A5) IXKEXP (- (Y1A2))
1400 LET Y3=V1/X1-X1

1405 IF Y320 GOTO 1422

1410 LET Y4=1/7(1+FXY3)

1420 LET R1=1-(A1IXY4+AZX(YAAZ)+ABN(YAAZ) +A4X(YE4A4) +ASX(YAAS) ) REXF (- (Y3A2))

1421 GOTO 1430
1422 LET Y3=X1-V1/X1

1424 LET Y4=1/(1+FXY3)

1426 LET R1=(ALXY4+AZXCYAAZ) +AGR(YAA) +AAX(YAAR) +ASX (T AAS) ) XEXF (- (Y3A2))
1428 LET U=, Sx (RXEXF (AXX+2XU1) +R1IKEXE CARX-2XU1) ) /W

1429 GOTO 1440

1430 LET U SXCRXEXF (4XX+2%V1)+ (14R1) XEXF (4KX=2XV1) ) /W

1440 LET YS=2xX1+\1/X1
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ST

1450

14640
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
14600
1410
1620
1630
1633
1L&R7
14640
. | 16435
B 1450
G 18460
: 1670
/ 1800
1810
2000

Fad

e i e e e w24

"WAKEFLO4" LISTING (CONT'D)

T Yé=1/ CL4PRYS)

LET RZ=(AIXYHFAZX(YSA2 I +AIX(YLEAI) +AGR(YEAG) +ASK(YAHAT ) IXEXF (- (YEAZ))
LET ¥Y7=X1-Y1/X1
IF Y7<0 GOTO 1520
LET Y8=1/C1+FxXY7)
LET R3I=(A1XYB+AZX(YBAZ)+ABXYBAZ) +AGR(YBAG) +ATXK(YEAT ) XEXP (- (YTAZ)
GOTO 1550
LET YZ7=QPL/X1~X1
LET Y8=1/C1+FXY7)
LET R3=2-(A1XYR+AZX(YBAD) +AIRYBAZI +A4XCYBAA H+AIX(YBAG) ) XEXF (~(Y742))
LET Y?=2xX1-V1/X1
IF y9«0 GOTO 14600
LET Fl=1/01+FxY9®)
LET R4=(ALXF1+AZX(F1AZ) +A3X(FLIAD) +AAXFLAG) +AGXFLAD) ) XEXF (- (Y®AZ))
GOTO 1830
IET Y?=U1/X1-2%X1
Flael/CL+PxYe)
R4=2- CALXFL+AZRFLA) +ABXC(F LA +AIX(FLAG) +ASKCF LAS) ) XEXP (- (YPAL) )
Thoe s GRCEXMCEXF CAXX 2%V L ) KRICEXP (ARX+ZTRV L) XR Y )
T s GXCCKEXF CLEXX -GV I XRA+EXP (1 6XX+4%V1YXR2))
T3=TI1+T2
TﬂwTﬁ/H
(TAXCHAE ) 7 (TaxH+ 1)
Ré 1+T3
UZ2=W2+REXV /40
NEXT I
FRINT "TRANSFORMED HALF THICKNESS (YTTLDA/CARTHETA) ="V
FRINT "FHYSICAL HALF THITKNESS (Y/CARTHETA)Y="3VU2
END

F —
T IT: TY; ITY T

mm
o o ] -

-
: ™M
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"WAKEFLO4" OUTPUT
1
1
FHYSTIOAL VELOCITY HALF-THICKNESS COMPUTATION (UTILDA=0,01)
FOR SYMMETRIC WAKES *
FOR X = 41
AND M= O 4
AND TW/TO= 1
TRANSFORMED HALF THICKNESS (YTILDA/CAPTHETA)= 2.7
FHYSICAL HALF THICKNESS (Y/CAFTHETA)= 4.29334
|
|
|
|
|
l
1
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"WAKEFLO6" PROGRAM

1. Purpose: To compute the "profiles" for the completely asymmetric
(P = 0) wake for & given x”, M., and Tw/To' for intervals
of y” over a specified range of y~.

2. Application Example

Compute the profiles for P = 0 and x“~ 0.01, M, = 1 and T /T = 1.01
in steps of y~ = 0.3 over the range from y” = -3 to +3.

Enter:
20 LET X = 0.01
22 LET M=}

24 LET T =1.00
160 FOR Y = -3 to 3 STEP 0.3

3. Explanation of Output Symbols

Printout Symbol Explanation
Y* ¥y
Y*/2SQR(X*) F
1 - U/UE 1 - u/ue
T/TE -1 T/Te -1
R/RE - 1 ;/re -1
M M
TO/TOE - 1 To/Toe -1
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10
135
16
20

22

<9

26

28

30

40

S50

&0

70

80

@0

100
110
120
122
124
126
130
140
150
140
170
175
180
190
191
192
194
i94
200
210
220
<30
249
250
260
270
280
290
300
310
320
330
a%0
340
380

REM
DIM
DIM
LET

,_
H
Pz
3
-t

T H ¢ H

mmmmmmmm
- gy

~rer-—

LET

FRIN
FRI
FRI
FRI
PRI
FRI
FRI
FRI
FRT
FRI
FOR
LET
IF
LET
LET
GOT
LET
LET

LET Y1=2-(A1XB+AZX(BAR)+A3X(EA3) +A9X(BAG) +ASX(BAS) )REXP(~(ZA2))

LET
LET
IF

LET
LET
GOT
LET
LET
LET
LET
LET
LET
LET
LET
FRIY
FRT
NE X

"WAKEFLO6" LISTING

WAKEFL.06

YCR0),Z¢40),EC40),Y1(40),U(40) :
Z1CA0) ,DCA0 ,Y2(A40),Y3(40),H(40),R(40),M(40),T1(40)
Xz 01

" Ml

T=1.01
Bla o 2M(MAZIXCTHLI+T -1
G s 2X(MAZ)
Fey 327591
Al 254829592 %
AZ=- 2844967360000001 4
A3=1.421413741%
A1 o AN3L1H2027 %
AG=1.061405429%
T "COMPLETELY ASYMMETRIC (P=0) WAKE FPROFILES"
NT B0 e e tons tane -000 e 3024 5430 1 e S04 00 Bt SR BHLL T S S48 WA shes HAAS 1o R 008 SRRS TN TeNY Wen UL So%0 08 B4R R S0A% Thoe Seve AR T4OR Y e
NT
NT "FOR X’="3X
NT "AND MACH NOQ.="3M
NT "TW/TO="3}T
NT
NT Y/, MY/ /28QRX) ", "1-U/ZUE" ,"T/TE-1","R/RE-1"
NT TAER(8),"M","TO/TOE~1L"
NT
Y3 TO 3 STEF .3
Z=GRR (X)) +Y/ (2xGQRR (X))
Z<0 GOTO 192
B=1/(1+F%xZ)
Y1=(AIXB+AZX (BAZY+AX(BAZ) +A4X(BAR ) +ATX (EAD) Y XEXF (- (ZA2))
0 200
Z==Y/ (2%SQAR (X)) -8AR (X)
B=1/C1+PxZ)

Us o SGREXP (X4+Y ) %Y1

Z1=2xGAR(X)+Y/ (2xEQAR (X))

Z1<0 GOTO 260

D=1/CL+FXxZ1)
Y2=(A1XD+AZX(DAZ)I+A3X(DA3) +A4X(DA4) +ASX (DAD) Y XEXF (~(Z142))
0 290

Z1=-Y/ (2XERR (X)) -2xEQAR(X)

D=1/C1+FxZ1)

Y2=2-(A1XD+AZX(DA2) +AIXK(DAZ) +AAX(DAG) +AIX (DAS) IXEXP (- (Z142))

H= o SROXEXP (42X +2XY) xY2+E1%U

Y3=Y/ (2XSQAR(X))

Re=~H/ (H+1)

M1=(1-U)xMxGQR (1 +R)

TI=COHALI XL+, 2% (M1A2) ) /(14,2 (MA2) ) )1
NT Y,Y3,U,H,R

NT TAE(8),M1,T1

TY

1000 END

N
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"WAKEFLO7" PROGRAM

1. Purpose: To compute completely asymmetric (P = 0) wake profiles of
velocity, density, etc. normalized so that the maximum value

of each profile is 1.0. This is done for a fixed x°, Me
end T./T,. The program requires inputs from the WAKEFLO6

program in the form of the extreme (center) values of velocity,
temperature and density.

2. Application Example

Compute the normalized profiles for the P = O wake when x” = 0.3, Me

Tw/To = 0.2 for -3 <y” < 3 in steps of 0.05. For this case, the
WAKEFLO6 program gives the following center values:

"
o
-

(1 - !-)C = 0.3705
ue

(-1-- 1), = 1.426
e

(B~ - 1), = -0.5879
pe

Enter:

20 LET X = 0.3

22 LETM=6

24 LET T =0.2

82 LETU = 0.3705

84 LETT = 1.426

86 LET R = -0.5879

160 FORY = -3 TO 3 STEP 0.06
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3.

Explanation of OGutput Symbols

v
Y“/2SQR(x")
1 - U/UE
T/TE -1
R/RE - 1

74
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y
F
(ue - u)/ue - uc)
(T-T 141, -T)

e
(o - pa)/ (P, - p,)




ST T/

i0
15
16
20
22
24
26
28
30
40
50
60
70
80
82
84
8é
?0
100
110
120
122
124
125
126
127
128
129
130
150
160
170
175
180
190
191
192
194
196
200
210
220
230
240
250
2460
270
280
290
300
310
320
330
350
380
390
400

REM
DIM
DIM
LET
LET
LET
LET
LET
LET
LET
LET
ILET
LET
LET
LET
LET
LET
FRIN
FRI
PRI
FRT
FRI
FRIX
FRIY
FRIX
FRI
FRI
FRI
FRI
FRY

FOR

LET
IF

LET
LET
GOT
LET
LET
LET
LET
LET
IF

LET
LET
GOT
LET
LET
LET
LET
LET
LET
LET
LET
PRI
NEX
FRI
FRI

"WAKEFLO7" LISTING

WAKEFL.07

YC100) ,Z2¢100),B¢100),Y1¢1005,UC100)

Z1CL00) D100, Y24100),Y3C100),HC1I00),R(100),M(100),T1C100)
Xz 43

M=4

T=,2

Bl , 2K (MAZIX(T+1)4+T~1

Crimy 2X(MAZ)

Fre=4327591

Al-,?ﬁ BAGLPLE

AZ=—,2844967360000001%

A3=1,421213741%

Ad=—-1,4%53152027 %

AS=1,061405429%

UP=.3705

TP=1,426

RY=—-,5879

T "NORMALIZED FROFILES FOR COMPLETELY ASYMMETRIC (P=0) CASE"

N r Bl e ) e o 0 10t 1000 ke s vom eee o 1 it e S0 2004 e beR4 dora e o0 S dade A1et 020 i M BAak 4iSt SEOm FE PSS SO Mhke et sasd ST S0 ke bt

NT
NT "FOR X7="3X
NT “AND MACH NO.='"3M
NT "TW/T0="3T
NT "CENTER 1-U/UE IS="}U9
NT "CENTER T/TE-1="3T9
NT "CENTER R/RE-~1="}R9
NT
NT
NT MY/ UMY /28QROX) ", " (I-U/UEY X", "(T/TE~1)%", " (R/RE~1)x"
NT
Y=~3 TO 3 STEF .06
Z=GAR(X)+Y/ (2XERER (X))
Z<0 GOTO 192
$m1/ (LAFXZ)
Y1=(ALXE+AZX (BAZ)+A3X(EA3) +A4X(BA4) +ASX (EAS) ) XEXF (- (ZA2))
Q0 200
Z=~-Y/(2xGAR (X)) -SRR(X)
E=1/(1+Fx%2Z)
Y1=2-(A1IXKE+AZX(BAZ)+AIX(EA3) +A4X (EA4) +ANX (EAS) )XEXF (- (ZA2))
Uy GXEXF (X+Y ) %Y1
Z1=2xG5QR(X)+Y/ (2%SQR (X))
Z1+0 GOTO 260
D=1/ C1+F%Z1)
Y2=(A1XD+AZX(DAZ) +A3X(DAZ) +AGX (DAY +ASX(DAS) ) XEXP (- (Z14A2))
0 290
Z1==-Y/(2XSQR (X)) ~2XSQR(X)
D=1/C1+FxZ1)

Y2=2~(ALXD+AZX(DAZ)+ABX(DAT) +A4X (DAG) +AGX(DAS) )XEXF (- (Z142))

Hz= o SXCXKEXF (4XX+2XY )XY 2+E1 XL
Y3=Y/(2%XSQR(X) )
RewH/ (H+1)
M1=(1-LJ)xMxSQR(1+R)
Tl ((H+AL) XL+ 2X(M1AZ)) /(142X (MA2) ) ) -1
NT Y,Y3,U/U9,H/T9,R/R?
TY
NT
NT “x NORMALIZED WITH THE AFFROFRIATE CENTER VALUE"

1000 END —

PR A e . T
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"WAKEFLO7" OUTPUT

mwmwmwamwmqmmmm~~~um—am«mw*ﬁmmmm*~m~mumumm

NORMALTZED PROFILES FOR CQ“E&ETELY ASYMMETRIC (F=0) CASE

FOR X’= ,3

AND MACH NO,= 4

TW/TO= o2 '
CENTER 1-U/UE IS= ,370%5
CENTER T/TE-1= 1,424
CENTER R/RE~)=-,5879

Y’ Y /28QR (X ‘) (1-U/UE) %

Bt . v e b T M A 10t s

(T/TE~1)% (R/RE~1)x
-3 ~2.73861 +1B1215 e 327995 5492051
~2+949 -2« 58384 192365 + 34557 1561508
~2.88 ~2e42907 1204086 + 363893 581108
~3.82 ~2.5743 216714 + 382967 +60081
~2. T4 -2,51952 1229983 +402795 620567
“27 ~Ze 46475 + 244032 + 423371 640334
-2 49 ~2.40998 258895 + 4444685 16600481
2458 2. 35521 127461 466722 W&797
““?oﬁ? ‘“4.030044 0291209 0489456 06992
S ~2. 24566 + 308724 12857 W 718508
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